Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural engineering of ferromagnetism in III-V digital ferromagnetic heterostructures

Identifieur interne : 00A505 ( Main/Repository ); précédent : 00A504; suivant : 00A506

Structural engineering of ferromagnetism in III-V digital ferromagnetic heterostructures

Auteurs : RBID : Pascal:04-0182161

Descripteurs français

English descriptors

Abstract

We investigate the possibility of modulating the magnetic properties of (Ga,Mn)As digital ferromagnetic heterostructures (DFHs) via strain engineering. We p-dope DFHs below the compensation threshold of residual As antisites to achieve variations in strain without introducing free carriers and with relatively modest concentrations of impurity atoms. X-ray diffraction and superconducting quantum interference device measurements reveal a trend toward higher TC as the out-of-plane strain is increased. Additionally, we demonstrate a second method for strain engineering wherein DFHs are grown on anisotropically relaxed (Ga,In)As stressor layers. We show that the ferromagnetic properties are independent of strain in this regime and conclude that the structure-dependent modulation of magnetic properties in DFHs cannot be explained by simple strain effects alone. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0182161

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural engineering of ferromagnetism in III-V digital ferromagnetic heterostructures</title>
<author>
<name sortKey="Schuller, J A" uniqKey="Schuller J">J. A. Schuller</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johnston Halperin, E" uniqKey="Johnston Halperin E">E. Johnston Halperin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gallinat, C S" uniqKey="Gallinat C">C. S. Gallinat</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Knotz, H" uniqKey="Knotz H">H. Knotz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gossard, A C" uniqKey="Gossard A">A. C. Gossard</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Awschalom, D D" uniqKey="Awschalom D">D. D. Awschalom</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Spintronics and Quantum Computation, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0182161</idno>
<date when="2004-05-01">2004-05-01</date>
<idno type="stanalyst">PASCAL 04-0182161 AIP</idno>
<idno type="RBID">Pascal:04-0182161</idno>
<idno type="wicri:Area/Main/Corpus">00B994</idno>
<idno type="wicri:Area/Main/Repository">00A505</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Curie point</term>
<term>Experimental study</term>
<term>Ferromagnetic materials</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Internal stresses</term>
<term>Magnetic epitaxial layers</term>
<term>Magnetic hysteresis</term>
<term>Magnetic semiconductors</term>
<term>Semiconductor heterojunctions</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7550P</term>
<term>7550D</term>
<term>7530K</term>
<term>7560E</term>
<term>7570A</term>
<term>Etude expérimentale</term>
<term>Hétérojonction semiconducteur</term>
<term>Gallium arséniure</term>
<term>Couche épitaxique magnétique</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur magnétique</term>
<term>Matériau ferromagnétique</term>
<term>Contrainte interne</term>
<term>Densité porteur charge</term>
<term>Point Curie</term>
<term>Hystérésis magnétique</term>
<term>Diffraction RX</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigate the possibility of modulating the magnetic properties of (Ga,Mn)As digital ferromagnetic heterostructures (DFHs) via strain engineering. We p-dope DFHs below the compensation threshold of residual As antisites to achieve variations in strain without introducing free carriers and with relatively modest concentrations of impurity atoms. X-ray diffraction and superconducting quantum interference device measurements reveal a trend toward higher T
<sub>C</sub>
as the out-of-plane strain is increased. Additionally, we demonstrate a second method for strain engineering wherein DFHs are grown on anisotropically relaxed (Ga,In)As stressor layers. We show that the ferromagnetic properties are independent of strain in this regime and conclude that the structure-dependent modulation of magnetic properties in DFHs cannot be explained by simple strain effects alone. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural engineering of ferromagnetism in III-V digital ferromagnetic heterostructures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHULLER (J. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JOHNSTON HALPERIN (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GALLINAT (C. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KNOTZ (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GOSSARD (A. C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AWSCHALOM (D. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>4922-4927</s1>
</fA20>
<fA21>
<s1>2004-05-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0182161</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We investigate the possibility of modulating the magnetic properties of (Ga,Mn)As digital ferromagnetic heterostructures (DFHs) via strain engineering. We p-dope DFHs below the compensation threshold of residual As antisites to achieve variations in strain without introducing free carriers and with relatively modest concentrations of impurity atoms. X-ray diffraction and superconducting quantum interference device measurements reveal a trend toward higher T
<sub>C</sub>
as the out-of-plane strain is increased. Additionally, we demonstrate a second method for strain engineering wherein DFHs are grown on anisotropically relaxed (Ga,In)As stressor layers. We show that the ferromagnetic properties are independent of strain in this regime and conclude that the structure-dependent modulation of magnetic properties in DFHs cannot be explained by simple strain effects alone. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E50D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E30K</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70E70A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7550P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7550D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7530K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7560E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7570A</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche épitaxique magnétique</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Magnetic epitaxial layers</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur magnétique</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Magnetic semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Contrainte interne</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Internal stresses</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Carrier density</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Point Curie</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Curie point</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffraction RX</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>XRD</s0>
</fC03>
<fN21>
<s1>124</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0416M000135</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A505 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A505 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0182161
   |texte=   Structural engineering of ferromagnetism in III-V digital ferromagnetic heterostructures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024